333 research outputs found

    Deterministic Weak Localization in Periodic Structures

    Full text link
    The weak localization is found for perfect periodic structures exhibiting deterministic classical diffusion. In particular, the velocity autocorrelation function develops a universal quantum power law decay at 4 times Ehrenfest time, following the classical stretched-exponential type decay. Such deterministic weak localization is robust against weak enough randomness (e.g., quantum impurities). In the 1D and 2D cases, we argue that at the quantum limit states localized in the Bravis cell are turned into Bloch states by quantum tunnelling.Comment: 5 pages, 2 figure

    Strong valence fluctuation in the quantum critical heavy fermion superconductor beta-YbAlB4: A hard x-ray photoemission study

    Full text link
    Electronic structures of the quantum critical superconductor beta-YbAlB4 and its polymorph alpha-YbAlB4 are investigated by using bulk-sensitive hard x-ray photoemission spectroscopy. From the Yb 3d core level spectra, the values of the Yb valence are estimated to be ~2.73 and ~2.75 for alpha- and beta-YbAlB4, respectively, thus providing clear evidence for valence fluctuations. The valence band spectra of these compounds also show Yb2+ peaks at the Fermi level. These observations establish an unambiguous case of a strong mixed valence at quantum criticality for the first time among heavy fermion systems, calling for a novel scheme for a quantum critical model beyond the conventional Doniach picture in beta-YbAlB4.Comment: 4 pages, 3 figures, revised version accepted for publication in PR

    Quantum Criticality without Tuning in the Mixed Valence Compound beta-YbAlB4

    Full text link
    Fermi liquid theory, the standard theory of metals, has been challenged by a number of observations of anomalous metallic behavior found in the vicinity of a quantum phase transition. The breakdown of the Fermi liquid is accomplished by fine-tuning the material to a quantum critical point using a control parameter such as the magnetic field, pressure, or chemical composition. Our high precision magnetization measurements of the ultrapure f-electron based superconductor {\beta}-YbAlB4 demonstrate a scaling of its free energy indicative of zero-field quantum criticality without tuning in a metal. The breakdown of Fermi-liquid behavior takes place in a mixed-valence state, in sharp contrast with other known examples of quantum critical f-electron systems that are magnetic Kondo lattice systems with integral valence.Comment: 26 pages, 7 figures including supporting online matelial

    The Geometry and Moduli of K3 Surfaces

    Get PDF
    These notes will give an introduction to the theory of K3 surfaces. We begin with some general results on K3 surfaces, including the construction of their moduli space and some of its properties. We then move on to focus on the theory of polarized K3 surfaces, studying their moduli, degenerations and the compactification problem. This theory is then further enhanced to a discussion of lattice polarized K3 surfaces, which provide a rich source of explicit examples, including a large class of lattice polarizations coming from elliptic fibrations. Finally, we conclude by discussing the ample and Kahler cones of K3 surfaces, and give some of their applications.Comment: 34 pages, 2 figures. (R. Laza, M. Schutt and N. Yui, eds.

    Anomalous Coherent Backscattering of Light from Opal Photonic Crystals

    Full text link
    We studied coherent backscattering (CBS) of light from opal photonic crystals in air at different incident inclination angles, wavelengths and along various [hkl] directions inside the opals. Similar to previously obtained CBS cones from various random media, we found that when Bragg condition with the incident light beam is not met then the CBS cones from opals show a triangular line shape in excellent agreement with light diffusion theory. At Bragg condition, however, we observed a dramatic broadening of the opal CBS cones that depends on the incident angle and [hkl] direction. This broadening is explained as due to the light intensity decay in course of propagation along the Bragg direction {\em before the first} and {\em after the last} scattering events. We modified the CBS theory to incorporate the attenuation that results from the photonic band structure of the medium. Using the modified theory we extract from our CBS data the light mean free path and Bragg attenuation length at different [hkl]. Our study shows that CBS measurements are a unique experimental technique to explore photonic crystals with disorder, when other spectroscopical methods become ambiguous due to disorder-induced broadening.Comment: 10 pages, 5 figure

    Vortex-antivortex wavefunction of a degenerate quantum gas

    Full text link
    A mechanism of a pinning of the quantized matter wave vortices by optical vortices in a specially arranged optical dipole traps is discussed. The vortex-antivortex optical arrays of rectangular symmetry are shown to transfer angular orbital momentum and form the "antiferromagnet"-like matter waves. The separable Hamiltonian for matter waves in pancake trapping geometry is proposed and 3D-wavefunction is factorized in a product of wavefunctions of the 1D harmonic oscillator and 2D vortex-antivortex quantum state. The 2D wavefunction's phase gradient field associated via Madelung transform with the field of classical velocities forms labyrinth-like structure. The macroscopic quantum state composed of periodically spaced counter-rotating BEC superfluid vortices has zero angular momentum and nonzero rotational energy.Comment: 11 pages, 5 figure

    Localization in a random phase-conjugating medium

    Full text link
    We theoretically study reflection and transmission of light in a one-dimensional disordered phase-conjugating medium. Using an invariant imbedding approach a Fokker-Planck equation for the distribution of the probe light reflectance and expressions for the average probabilities of reflection and transmission are derived. A new crossover length scale for localization of light is found, which depends on the competition between phase conjugation and disorder. For weak disorder, our analytical results are in good agreement with numerical simulations.Comment: RevTex, 4 pages, 4 figure

    Anisotropic multiple scattering in diffuse media

    Get PDF
    The multiple scattering of scalar waves in diffusive media is investigated by means of the radiative transfer equation. This approach amounts to a resummation of the ladder diagrams of the Born series; it does not rely on the diffusion approximation. Quantitative predictions are obtained, concerning various observables pertaining to optically thick slabs, such as the mean angle-resolved reflected and transmitted intensities, and the shape of the enhanced backscattering cone. Special emphasis is put on the dependence of these quantities on the anisotropy of the cross-section of the individual scatterers, and on the internal reflections due to the optical index mismatch at the boundaries of the sample. The regime of very anisotropic scattering, where the transport mean free path \ell^* is much larger than the scattering mean free path \ell, is studied in full detail. For the first time the relevant Schwarzschild-Milne equation is solved exactly in the absence of internal reflections, and asymptotically in the regime of a large index mismatch. An unexpected outcome concerns the angular width of the enhanced backscattering cone, which is predicted to scale as Δθλ/\Delta\theta\sim\lambda/\sqrt{\ell\ell^*}, in contrast with the generally accepted λ/\lambda/\ell^* law, derived within the diffusion approximation.Comment: 53 pages TEX, including 2 tables. The 4 figures are sent at reques
    corecore